Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 145
Filtrar
1.
Sports (Basel) ; 12(4)2024 Apr 22.
Artigo em Inglês | MEDLINE | ID: mdl-38668582

RESUMO

Physical activity is an especially important part of everyday life for children with chronic diseases. The aim of the study was to show whether asthma is a barrier to physical activity in our society. The correlations between the severity of the disease, body mass index, and physical activity were analyzed, and parents' opinions on whether children should participate in active sports were assessed. Physical activity of children with asthma was analyzed by questionnaires; 93 parents and their 93 children were involved in the survey. The age of children was 12.6 ± 3.5 years (mean ± SD), 69.9% were boys, 30.1% were girls. A total of 93.4% of the respondents participated in a physical education program and 56.5% also attended sporting activities on a regular basis. In terms of disease severity, 61.2% of the children had mild asthma, 37.6% moderate, and 1.2% severe, and 6.5% of the respondents also stated that their children's illness had been consistently or frequently limiting their performance concerning their school or home duties over the past four weeks. Of the parents surveyed, 12% felt that physical activity was not appropriate in the context of this disease. We concluded that fear of the consequences of physical activity depends largely on education, which should involve parents, teachers, and coaches.

2.
Cell Death Dis ; 14(10): 706, 2023 10 28.
Artigo em Inglês | MEDLINE | ID: mdl-37898628

RESUMO

Skeletal muscle regeneration is a complex process orchestrated by multiple interacting steps. An increasing number of reports indicate that inflammatory responses play a central role in linking initial muscle injury responses to timely muscle regeneration following injury. The nucleoside adenosine has been known for a long time as an endogenously produced anti-inflammatory molecule that is generated in high amounts during tissue injury. It mediates its physiological effects via four types of adenosine receptors. From these, adenosine A3 receptors (A3Rs) are not expressed by the skeletal muscle but are present on the surface of various inflammatory cells. In the present paper, the effect of the loss of A3Rs was investigated on the regeneration of the tibialis anterior (TA) muscle in mice following cardiotoxin-induced injury. Here we report that regeneration of the skeletal muscle from A3R-/- mice is characterized by a stronger initial inflammatory response resulting in a larger number of transmigrating inflammatory cells to the injury site, faster clearance of cell debris, enhanced proliferation and faster differentiation of the satellite cells (the muscle stem cells), and increased fusion of the generated myoblasts. This leads to accelerated skeletal muscle tissue repair and the formation of larger myofibers. Though the infiltrating immune cells expressed A3Rs and showed an increased inflammatory profile in the injured A3R-/- muscles, bone marrow transplantation experiments revealed that the increased response of the tissue-resident cells to tissue injury is responsible for the observed phenomenon. Altogether our data indicate that A3Rs are negative regulators of injury-related regenerative inflammation and consequently also that of the muscle fiber growth in the TA muscle. Thus, inhibiting A3Rs might have a therapeutic value during skeletal muscle regeneration following injury.


Assuntos
Cardiotoxinas , Células Satélites de Músculo Esquelético , Camundongos , Animais , Cardiotoxinas/toxicidade , Receptor A3 de Adenosina/genética , Músculo Esquelético , Fibras Musculares Esqueléticas
3.
Biol Futur ; 74(3): 337-346, 2023 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-37814124

RESUMO

Basic leucine zipper (bZIP) transcription factors are crucial components of differentiation, cellular homeostasis and the environmental stress defense of eukaryotes. In this work, we further studied the consequence of gene deletion and overexpression of two bZIP transcription factors, NapA and RsmA, on superoxide production, mitochondrial morphology and hyphal diameter of Aspergillus nidulans. We have found that reactive oxygen species production was influenced by both gene deletion and overexpression of napA under tert-butylhydroperoxide (tBOOH) elicited oxidative stress. Furthermore, gene expression of napA negatively correlated with mitochondrial volumetric ratio as well as sterigmatocystin production of A. nidulans. High rsmA expression was accompanied with elevated relative superoxide ratio in the second hyphal compartment. A negative correlation between the expression of rsmA and catalase enzyme activity or mitochondrial volumetric ratio was also confirmed by statistical analysis. Hyphal diameter was independent on either rsmA and napA expression as well as 0.2 mM tBOOH treatment.


Assuntos
Aspergillus nidulans , Fatores de Transcrição de Zíper de Leucina Básica , Fatores de Transcrição de Zíper de Leucina Básica/genética , Fatores de Transcrição de Zíper de Leucina Básica/metabolismo , Aspergillus nidulans/genética , Aspergillus nidulans/metabolismo , Superóxidos/metabolismo , Proteínas Fúngicas/genética , Proteínas Fúngicas/metabolismo , Mitocôndrias/genética , Mitocôndrias/metabolismo
4.
Int J Mol Sci ; 24(17)2023 Aug 31.
Artigo em Inglês | MEDLINE | ID: mdl-37686339

RESUMO

Septins are considered the fourth component of the cytoskeleton with the septin7 isoform playing a critical role in the formation of diffusion barriers in phospholipid bilayers and intra- and extracellular scaffolds. While its importance has already been confirmed in different intracellular processes, very little is known about its role in skeletal muscle. Muscle regeneration was studied in a Sept7 conditional knock-down mouse model to prove the possible role of septin7 in this process. Sterile inflammation in skeletal muscle was induced which was followed by regeneration resulting in the upregulation of septin7 expression. Partial knock-down of Sept7 resulted in an increased number of inflammatory cells and myofibers containing central nuclei. Taken together, our data suggest that partial knock-down of Sept7 hinders the kinetics of muscle regeneration, indicating its crucial role in skeletal muscle functions.


Assuntos
Citoesqueleto , Infertilidade , Animais , Camundongos , Difusão , Modelos Animais de Doenças , Músculo Esquelético , Septinas/genética
5.
Healthcare (Basel) ; 11(13)2023 Jul 03.
Artigo em Inglês | MEDLINE | ID: mdl-37444749

RESUMO

The workers of the health sector are important to the country's economy in many ways. Healthy and rested workers are highly valuable to the public health sector and give a good perception of their work to patients and society. It is thus important to have a sufficient number of healthy working staff in healthcare institutions who do not have work fatigue and burnout. A total of 987 employees-doctors, professional staff, and others-of a large healthcare institution in Hungary voluntarily participated in a survey regarding their lifestyle and physical activity habits and answered the questions anonymously. Women reported less leisure time (p < 0.02), with 54.9% of female respondents saying that they did not exercise regularly, and fatigue was more common among them (p < 0.001). In this respect, the healthcare workers' responses did not differ from those of the overall population. The most common sports were cycling (17.7%), running (15.4%), and working out in a gym (12.3%). Reasons for not participating in sports included lack of time (70.2%) and fatigue (43.9%) as the most frequent responses. Healthcare workers are exposed to a number of risks that require particular attention to maintain their health. Employers should thus focus on implementing programs that prevent burnout and promote healthy lifestyles.

6.
bioRxiv ; 2023 Nov 16.
Artigo em Inglês | MEDLINE | ID: mdl-37461567

RESUMO

Here, we investigated mechanisms by which aging-related reductions of the levels of Numb in skeletal muscle fibers contribute to loss of muscle strength and power, two critical features of sarcopenia. Numb is an adaptor protein best known for its critical roles in development including asymmetric cell division, cell-type specification and termination of intracellular signaling. Numb expression is reduced in old humans and mice. We previously showed that, in mouse skeletal muscle fibers, Numb is localized to sarcomeres where it is concentrated near triads; conditional inactivation of Numb and a closely related protein Numb-like (NumbL) in mouse myofibers caused weakness, disorganization of sarcomeres and smaller mitochondria with impaired function. Here, we found that a single knockout of Numb in myofibers causes reduction in tetanic force comparable to a double Numb, NumbL knockout. We found by proteomics analysis of protein complexes isolated from C2C12 myotubes by immunoprecipitation using antibodies against Numb, that Septin 7 is a potential Numb binding partner. Septin 7 is a member of the family of GTP-binding proteins that organize into filaments, sheets and rings, and is considered part of the cytoskeleton. Immunofluorescence evaluation revealed a partial overlap of staining for Numb and Septin 7 in myofibers. Conditional, inducible knockouts of Numb led to disorganization of Septin 7 staining in myofibers. These findings indicate that Septin 7 is a Numb binding partner and suggest that interactions between Numb and Septin 7 are critical for structural organization of the sarcomere and muscle contractile function.

7.
Cells ; 12(14)2023 07 11.
Artigo em Inglês | MEDLINE | ID: mdl-37508490

RESUMO

Septin7 as a unique member of the GTP binding protein family, is widely expressed in the eukaryotic cells and considered to be essential in the formation of hetero-oligomeric septin complexes. As a cytoskeletal component, Septin7 is involved in many important cellular processes. However, its contribution in striated muscle physiology is poorly described. In skeletal muscle, a highly orchestrated process of migration is crucial in the development of functional fibers and in regeneration. Here, we describe the pronounced appearance of Septin7 filaments and a continuous change of Septin7 protein architecture during the migration of myogenic cells. In Septin7 knockdown C2C12 cultures, the basic parameters of migration are significantly different, and the intracellular calcium concentration change in migrating cells are lower compared to that of scrambled cultures. Using a plant cytokinin, forchlorfenuron, to dampen septin dynamics, the altered behavior of the migrating cells is described, where Septin7-depleted cells are more resistant to the treatment. These results indicate the functional relevance of Septin7 in the migration of myoblasts, implying its contribution to muscle myogenesis and regeneration.


Assuntos
Músculo Esquelético , Septinas , Linhagem Celular , Desenvolvimento Muscular/fisiologia , Músculo Esquelético/metabolismo , Mioblastos/metabolismo , Septinas/metabolismo , Animais , Camundongos
8.
Front Microbiol ; 14: 1085818, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37125184

RESUMO

The gradual spread of Aspergilli worldwide is adding to the global shortage of food and is affecting its safe consumption. Aspergillus-derived mycotoxins, including aflatoxins and ochratoxin A, and fumonisins (members of the fusariotoxin group) can cause pathological damage to vital organs, including the kidney or liver. Although the kidney functions as the major excretory system in mammals, monitoring and screening for mycotoxin induced nephrotoxicity is only now a developmental area in the field of livestock feed toxicology. Currently the assessment of individual exposure to mycotoxins in man and animals is usually based on the analysis of toxin and/or metabolite contamination in the blood or urine. However, this requires selective and sensitive analytical methods (e.g., HPLC-MS/MS), which are time consuming and expensive. The toxicokinetic of mycotoxin metabolites is becoming better understood. Several kidney biomarkers are used successfully in drug development, however cost-efficient, and reliable kidney biomarkers are urgently needed for monitoring farm animals for early signs of kidney disease. ß2-microglobulin (ß2-MG) and N-acetyl-ß-D-glucosaminidase (NAG) are the dominant biomarkers employed routinely in environmental toxicology research, while kidney injury molecule 1 (KIM-1) and neutrophil gelatinase-associated lipocalin (NGAL) are also emerging as effective markers to identify mycotoxin induced nephropathy. Pigs are exposed to mycotoxins due to their cereal-based diet and are particularly susceptible to Aspergillus mycotoxins. In addition to commonly used diagnostic markers for nephrotoxicity including plasma creatinine, NAG, KIM-1 and NGAL can be used in pigs. In this review, the currently available techniques are summarized, which are used for screening mycotoxin induced nephrotoxicity in farm animals. Possible approaches are considered, which could be used to detect mycotoxin induced nephropathy.

9.
Int J Mol Sci ; 24(8)2023 Apr 08.
Artigo em Inglês | MEDLINE | ID: mdl-37108098

RESUMO

The remodelling of the extracellular matrix plays an important role in skeletal muscle development and regeneration. Syndecan-4 is a cell surface proteoglycan crucial for muscle differentiation. Syndecan-4-/- mice have been reported to be unable to regenerate following muscle damage. To investigate the consequences of the decreased expression of Syndecan-4, we have studied the in vivo and in vitro muscle performance and the excitation-contraction coupling machinery in young and aged Syndecan-4+/- (SDC4) mice. In vivo grip force was decreased significantly as well as the average and maximal speed of voluntary running in SDC4 mice, regardless of their age. The maximal in vitro twitch force was reduced in both EDL and soleus muscles from young and aged SDC4 mice. Ca2+ release from the sarcoplasmic reticulum decreased significantly in the FDB fibres of young SDC4 mice, while its voltage dependence was unchanged regardless of age. These findings were present in muscles from young and aged mice as well. On C2C12 murine skeletal muscle cells, we have also found altered calcium homeostasis upon Syndecan-4 silencing. The decreased expression of Syndecan-4 leads to reduced skeletal muscle performance in mice and altered motility in C2C12 myoblasts via altered calcium homeostasis. The altered muscle force performance develops at an early age and is maintained throughout the life course of the animal until old age.


Assuntos
Músculo Esquelético , Sindecana-4 , Animais , Camundongos , Cálcio/metabolismo , Contração Muscular/fisiologia , Fibras Musculares Esqueléticas/metabolismo , Músculo Esquelético/metabolismo , Retículo Sarcoplasmático/metabolismo , Sindecana-4/genética , Sindecana-4/metabolismo
10.
Int J Mol Sci ; 24(7)2023 Mar 30.
Artigo em Inglês | MEDLINE | ID: mdl-37047487

RESUMO

Since the recent discovery of the mechanosensitive Piezo1 channels, many studies have addressed the role of the channel in various physiological or even pathological processes of different organs. Although the number of studies on their effects on the musculoskeletal system is constantly increasing, we are still far from a precise understanding. In this review, the knowledge available so far regarding the musculoskeletal system is summarized, reviewing the results achieved in the field of skeletal muscles, bones, joints and cartilage, tendons and ligaments, as well as intervertebral discs.


Assuntos
Canais Iônicos , Tendões , Tendões/fisiologia , Músculo Esquelético/fisiologia , Ligamentos , Cartilagem
11.
Nat Commun ; 14(1): 1329, 2023 03 10.
Artigo em Inglês | MEDLINE | ID: mdl-36898987

RESUMO

During muscle cell differentiation, the alternatively spliced, acidic ß-domain potentiates transcription of Myocyte-specific Enhancer Factor 2 (Mef2D). Sequence analysis by the FuzDrop method indicates that the ß-domain can serve as an interaction element for Mef2D higher-order assembly. In accord, we observed Mef2D mobile nuclear condensates in C2C12 cells, similar to those formed through liquid-liquid phase separation. In addition, we found Mef2D solid-like aggregates in the cytosol, the presence of which correlated with higher transcriptional activity. In parallel, we observed a progress in the early phase of myotube development, and higher MyoD and desmin expression. In accord with our predictions, the formation of aggregates was promoted by rigid ß-domain variants, as well as by a disordered ß-domain variant, capable of switching between liquid-like and solid-like higher-order states. Along these lines, NMR and molecular dynamics simulations corroborated that the ß-domain can sample both ordered and disordered interactions leading to compact and extended conformations. These results suggest that ß-domain fine-tunes Mef2D higher-order assembly to the cellular context, which provides a platform for myogenic regulatory factors and the transcriptional apparatus during the developmental process.


Assuntos
Desenvolvimento Muscular , Fatores de Transcrição MEF2/genética , Diferenciação Celular , Éxons
12.
J Physiol ; 601(1): 99-121, 2023 01.
Artigo em Inglês | MEDLINE | ID: mdl-36408764

RESUMO

In mammalian skeletal muscle, the propagation of surface membrane depolarization into the interior of the muscle fibre along the transverse (T) tubular network is essential for the synchronized release of calcium from the sarcoplasmic reticulum (SR) via ryanodine receptors (RyRs) in response to the conformational change in the voltage-sensor dihydropyridine receptors. Deficiency in 3-phosphoinositide phosphatase myotubularin (MTM1) has been reported to disrupt T-tubules, resulting in impaired SR calcium release. Here confocal calcium transients recorded in muscle fibres of MTM1-deficient mice were compared with the results from a model where propagation of the depolarization along the T-tubules was modelled mathematically with disruptions in the network assumed to modify the access and transmembrane resistance as well as the capacitance. If, in simulations, T-tubules were assumed to be partially or completely inaccessible to the depolarization and RyRs at these points to be prime for calcium-induced calcium release, all the features of measured SR calcium release could be reproduced. We conclude that the inappropriate propagation of the depolarization into the fibre interior is the initial critical cause of severely impaired SR calcium release in MTM1 deficiency, while the Ca2+ -triggered opening of RyRs provides an alleviating support to the diseased process. KEY POINTS: Myotubular myopathy is a fatal disease due to genetic deficiency in the phosphoinositide phosphatase MTM1. Although the causes are known and corresponding gene therapy strategies are being developed, there is no mechanistic understanding of the disease-associated muscle function failure. Resolving this issue is of primary interest not only for a fundamental understanding of how MTM1 is critical for healthy muscle function, but also for establishing the related cellular mechanisms most primarily or stringently affected by the disease, which are thus of potential interest as therapy targets. The mathematical modelling approach used in the present work proves that the disease-associated alteration of the plasma membrane invagination network is sufficient to explain the dysfunctions of excitation-contraction coupling, providing the first integrated quantitative framework that explains the associated contraction failure.


Assuntos
Cálcio , Músculo Esquelético , Animais , Camundongos , Cálcio/metabolismo , Canais de Cálcio Tipo L/metabolismo , Cálcio da Dieta , Mamíferos/metabolismo , Contração Muscular/fisiologia , Fibras Musculares Esqueléticas/fisiologia , Músculo Esquelético/metabolismo , Canal de Liberação de Cálcio do Receptor de Rianodina/metabolismo , Retículo Sarcoplasmático/metabolismo
13.
Int J Mol Sci ; 23(24)2022 Dec 09.
Artigo em Inglês | MEDLINE | ID: mdl-36555292

RESUMO

The endocannabinoid system (ECS) refers to a widespread signaling system and its alteration is implicated in a growing number of human diseases. Cannabinoid receptors (CBRs) are highly expressed in the central nervous system and many peripheral tissues. Evidence suggests that CB1Rs are expressed in human and murine skeletal muscle mainly in the cell membrane, but a subpopulation is present also in the mitochondria. However, very little is known about the latter population. To date, the connection between the function of CB1Rs and the regulation of intracellular Ca2+ signaling has not been investigated yet. Tamoxifen-inducible skeletal muscle-specific conditional CB1 knock-down (skmCB1-KD, hereafter referred to as Cre+/-) mice were used in this study for functional and morphological analysis. After confirming CB1R down-regulation on the mRNA and protein level, we performed in vitro muscle force measurements and found that peak twitch, tetanus, and fatigue were decreased significantly in Cre+/- mice. Resting intracellular calcium concentration, voltage dependence of the calcium transients as well as the activity dependent mitochondrial calcium uptake were essentially unaltered by Cnr1 gene manipulation. Nevertheless, we found striking differences in the ultrastructural architecture of the mitochondrial network of muscle tissue from the Cre+/- mice. Our results suggest a role of CB1Rs in maintaining physiological muscle function and morphology. Targeting ECS could be a potential tool in certain diseases, including muscular dystrophies where increased endocannabinoid levels have already been described.


Assuntos
Cálcio , Endocanabinoides , Receptor CB1 de Canabinoide , Animais , Camundongos , Cálcio/metabolismo , Músculo Esquelético/metabolismo , Receptor CB1 de Canabinoide/genética , Transdução de Sinais
14.
Front Physiol ; 13: 1037230, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36439266

RESUMO

Vascular calcification (VC) is associated with a number of cardiovascular diseases, as well as chronic kidney disease. The role of smooth muscle cells (SMC) has already been widely explored in VC, as has the role of intracellular Ca2+ in regulating SMC function. Increased intracellular calcium concentration ([Ca2+]i) in vascular SMC has been proposed to stimulate VC. However, the contribution of the non-selective Piezo1 mechanosensitive cation channels to the elevation of [Ca2+]i, and consequently to the process of VC has never been examined. In this work the essential contribution of Piezo1 channels to arterial medial calcification is demonstrated. The presence of Piezo1 was proved on human aortic smooth muscle samples using immunohistochemistry. Quantitative PCR and Western blot analysis confirmed the expression of the channel on the human aortic smooth muscle cell line (HAoSMC). Functional measurements were done on HAoSMC under control and calcifying condition. Calcification was induced by supplementing the growth medium with inorganic phosphate (1.5 mmol/L, pH 7.4) and calcium (CaCl2, 0.6 mmol/L) for 7 days. Measurement of [Ca2+]i using fluorescent Fura-2 dye upon stimulation of Piezo1 channels (either by hypoosmolarity, or Yoda1) demonstrated significantly higher calcium transients in calcified as compared to control HAoSMCs. The expression of mechanosensitive Piezo1 channel is augmented in calcified arterial SMCs leading to a higher calcium influx upon stimulation. Activation of the channel by Yoda1 (10 µmol/L) enhanced calcification of HAoSMCs, while Dooku1, which antagonizes the effect of Yoda1, reduced this amplification. Application of Dooku1 alone inhibited the calcification. Knockdown of Piezo1 by siRNA suppressed the calcification evoked by Yoda1 under calcifying conditions. Our results demonstrate the pivotal role of Piezo1 channels in arterial medial calcification.

15.
Physiol Genomics ; 54(11): 457-469, 2022 11 01.
Artigo em Inglês | MEDLINE | ID: mdl-36250559

RESUMO

The vast majority of studies focusing on the effects of endurance exercise on hematological parameters and leukocyte gene expression were performed in adult men, so our aim was to investigate these changes in young females. Four young (age 15.3 ± 1.3 yr) elite female athletes completed an exercise session, in which they accomplished the cycling and running disciplines of a junior triathlon race. Blood samples were taken immediately before the exercise, right after the exercise, and then 1, 2, and 7 days later. Analysis of cell counts and routine biochemical parameters were complemented by RNA sequencing (RNA-seq) to whole blood samples. The applied exercise load did not trigger remarkable changes in either cardiovascular or biochemical parameters; however, it caused a significant increase in the percentage of neutrophils and a significant reduction in the ratio of lymphocytes immediately after exercise. Furthermore, endurance exercise induced a characteristic gene expression pattern change in the blood transcriptome. Gene set enrichment analysis (GSEA) using the Reactome database revealed that the expression of genes involved in immune processes and neutrophil granulocyte activation was upregulated, whereas the expression of genes important in translation and rRNA metabolism was downregulated. Comparison of a set of immune cell gene signatures (ImSig) and our transcriptomic data identified 15 overlapping genes related to T-cell functions and involved in podosome formation and adhesion to the vessel wall. Our results suggest that RNA-seq to whole blood together with ImSig analysis are useful tools for the investigation of systemic responses to endurance exercise.


Assuntos
Corrida , Transcriptoma , Masculino , Humanos , Feminino , Adolescente , Transcriptoma/genética , Resistência Física/genética , Projetos Piloto , Atletas , Corrida/fisiologia
16.
Elife ; 112022 08 05.
Artigo em Inglês | MEDLINE | ID: mdl-35929607

RESUMO

Today septins are considered as the fourth component of the cytoskeleton, with the Septin7 isoform playing a critical role in the formation of higher-order structures. While its importance has already been confirmed in several intracellular processes of different organs, very little is known about its role in skeletal muscle. Here, using Septin7 conditional knockdown (KD) mouse model, the C2C12 cell line, and enzymatically isolated adult muscle fibers, the organization and localization of septin filaments are revealed, and an ontogenesis-dependent expression of Septin7 is demonstrated. KD mice displayed a characteristic hunchback phenotype with skeletal deformities, reduction in in vivo and in vitro force generation, and disorganized mitochondrial networks. Furthermore, knockout of Septin7 in C2C12 cells resulted in complete loss of cell division while KD cells provided evidence that Septin7 is essential for proper myotube differentiation. These and the transient increase in Septin7 expression following muscle injury suggest that it may be involved in muscle regeneration and development.


Assuntos
Fibras Musculares Esqueléticas , Músculo Esquelético , Animais , Diferenciação Celular , Camundongos , Mitocôndrias/metabolismo , Fibras Musculares Esqueléticas/metabolismo , Músculo Esquelético/metabolismo , Septinas/genética , Septinas/metabolismo
17.
Int J Mol Sci ; 23(3)2022 Jan 24.
Artigo em Inglês | MEDLINE | ID: mdl-35163243

RESUMO

Obscurin is a giant sarcomeric protein expressed in striated muscles known to establish several interactions with other proteins of the sarcomere, but also with proteins of the sarcoplasmic reticulum and costameres. Here, we report experiments aiming to better understand the contribution of obscurin to skeletal muscle fibers, starting with a detailed characterization of the diaphragm muscle function, which we previously reported to be the most affected muscle in obscurin (Obscn) KO mice. Twitch and tetanus tension were not significantly different in the diaphragm of WT and Obscn KO mice, while the time to peak (TTP) and half relaxation time (HRT) were prolonged. Differences in force-frequency and force-velocity relationships and an enhanced fatigability are observed in an Obscn KO diaphragm with respect to WT controls. Voltage clamp experiments show that a sarcoplasmic reticulum's Ca2+ release and SERCA reuptake rates were decreased in muscle fibers from Obscn KO mice, suggesting that an impairment in intracellular Ca2+ dynamics could explain the observed differences in the TTP and HRT in the diaphragm. In partial contrast with previous observations, Obscn KO mice show a normal exercise tolerance, but fiber damage, the altered sarcomere ultrastructure and M-band disarray are still observed after intense exercise.


Assuntos
Cálcio/metabolismo , Proteínas Serina-Treonina Quinases/metabolismo , Fatores de Troca de Nucleotídeo Guanina Rho/metabolismo , Sarcômeros/metabolismo , Animais , Anquirinas/metabolismo , Conectina/metabolismo , Conectina/fisiologia , Masculino , Camundongos , Camundongos Knockout , Contração Muscular/fisiologia , Fibras Musculares Esqueléticas/metabolismo , Proteínas Musculares/metabolismo , Músculo Esquelético/metabolismo , Músculo Esquelético/fisiologia , Condicionamento Físico Animal , Proteínas Serina-Treonina Quinases/genética , Fatores de Troca de Nucleotídeo Guanina Rho/genética , Sarcômeros/fisiologia , Retículo Sarcoplasmático/metabolismo , ATPases Transportadoras de Cálcio do Retículo Sarcoplasmático/metabolismo
18.
Int J Mol Sci ; 23(2)2022 Jan 14.
Artigo em Inglês | MEDLINE | ID: mdl-35055102

RESUMO

Astaxanthin is a lipid-soluble carotenoid influencing lipid metabolism, body weight, and insulin sensitivity. We provide a systematic analysis of acute and chronic effects of astaxanthin on different organs. Changes by chronic astaxanthin feeding were analyzed on general metabolism, expression of regulatory proteins in the skeletal muscle, as well as changes of excitation and synaptic activity in the hypothalamic arcuate nucleus of mice. Acute responses were also tested on canine cardiac muscle and different neuronal populations of the hypothalamic arcuate nucleus in mice. Dietary astaxanthin significantly increased food intake. It also increased protein levels affecting glucose metabolism and fatty acid biosynthesis in skeletal muscle. Inhibitory inputs innervating neurons of the arcuate nucleus regulating metabolism and food intake were strengthened by both acute and chronic astaxanthin treatment. Astaxanthin moderately shortened cardiac action potentials, depressed their plateau potential, and reduced the maximal rate of depolarization. Based on its complex actions on metabolism and food intake, our data support the previous findings that astaxanthin is suitable for supplementing the diet of patients with disturbances in energy homeostasis.


Assuntos
Potenciais de Ação/efeitos dos fármacos , Anabolizantes/farmacologia , Metabolismo Energético/efeitos dos fármacos , Animais , Cães , Ingestão de Alimentos/efeitos dos fármacos , Hipotálamo/efeitos dos fármacos , Hipotálamo/metabolismo , Metabolismo dos Lipídeos/efeitos dos fármacos , Camundongos , Músculo Esquelético/efeitos dos fármacos , Músculo Esquelético/metabolismo , Miócitos Cardíacos/efeitos dos fármacos , Miócitos Cardíacos/metabolismo , Especificidade de Órgãos/efeitos dos fármacos , Transdução de Sinais/efeitos dos fármacos , Xantofilas/farmacologia
19.
J Muscle Res Cell Motil ; 43(1): 21-33, 2022 03.
Artigo em Inglês | MEDLINE | ID: mdl-34893938

RESUMO

Making benefit from the epigenetic effects of environmental factors such as physical activity may result in a considerable improvement in the prevention of chronic civilization diseases. In our chronic swimming rat model, the expression levels of such microRNAs were characterized, that are involved in skeletal muscle differentiation, hypertrophy and fine-tuning of metabolism, which processes are influenced by chronic endurance training, contributing to the metabolic adaptation of skeletal muscle during physical activity. After chronic swimming, the level of miR-128a increased significantly in EDL muscles, which may influence metabolic adaptation and stress response as well. In SOL, the expression level of miR-15b and miR-451 decreased significantly after chronic swimming, which changes are opposite to their previously described increment in insulin resistant skeletal muscle. MiR-451 also targets PGC-1α mRNA, whiches expression level significantly increased in SOL muscles, resulting in enhanced biogenesis and oxidative capacity of mitochondria. In summary, the microRNA expression changes that were observed during our experiments suggest that chronic swim training contributes to a beneficial metabolic profile of skeletal muscle.


Assuntos
MicroRNAs , Condicionamento Físico Animal , Animais , MicroRNAs/genética , Desenvolvimento Muscular/genética , Músculo Esquelético/metabolismo , Ratos , Natação
20.
Toxins (Basel) ; 13(12)2021 11 28.
Artigo em Inglês | MEDLINE | ID: mdl-34941686

RESUMO

The intensifying world-wide spread of mycotoxigenic fungal species has increased the possibility of mycotoxin contamination in animal feed and the human food chain. Growing evidence shows the deleterious toxicological effects of mycotoxins from infants to adults, while large population-based screening programs are often missing to identify affected individuals. The kidney functions as the major excretory system, which makes it particularly vulnerable to nephrotoxic injury. However, few studies have attempted to screen for kidney injury biomarkers in large, mycotoxin-exposed populations. As a result, there is an urgent need to screen them with sensitive biomarkers for potential nephrotoxicity. Although a plethora of biomarkers have been tested to estimate the harmful effects of a wide spectrum of toxicants, ß2-microglobulin (ß2-MG) and N-acetyl-ß-D-glucosaminidase (NAG) are currently the dominant biomarkers employed routinely in environmental toxicology research. Nevertheless, kidney injury molecule 1 (KIM-1) and neutrophil gelatinase-associated lipocalin (NGAL) are also emerging as useful and informative markers to reveal mycotoxin induced nephrotoxicity. In this opinion article we consider the nephrotoxic effects of mycotoxins, the biomarkers available to detect and quantify the kidney injuries caused by them, and to recommend biomarkers to screen mycotoxin-exposed populations for renal damage.


Assuntos
Nefropatias/induzido quimicamente , Nefropatias/urina , Micotoxinas/toxicidade , Animais , Biomarcadores/urina , Humanos , Nefropatias/diagnóstico
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...